ALARM PENDETEKSI KEBAKARAN 




1.  Alarm Kebakaran Menggunakan Sensor lm35 dan Sensor Thermistor [KEMBALI]     

    1.1 Tujuan [KEMBALI]           
          a. Memahami konsep dan prinsip kerja sensor lm35 dan sensor thermistor
          b. Membuat rangkaian elektronika sederhana guna meminimalisir terjadinya kebakaran

    1.2 Komponen [KEMBALI]           

          Alat :

          1.  Baterai
              Berfungsi sebagai sumber tegangan. Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektrode negatif, elektrode yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektrode positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katode ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anode ketika pengisian. Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.

Bagaimana Baterai Bekerja? - GIPeng



             2.         Probe Voltage

 

Berfungsi untuk mendeteksi apakah pada sumber yang di uji terdapat tegangan atau tidak. Bisa menguji tegangan AC serta tegangan DC.


            Bahan :
             
                1.  Resistor
               Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya.
Cara Menghitung Nilai Resistor
    
Spesifikasi :
                               

          2. .Potensiometer
Potensiometer adalah resistor tiga terminal dengan sambungan geser yang membentuk pembagi tegangan dapat disetel. Jika hanya dua terminal yang digunakan (salah satu terminal tetap dan terminal geser), potensiometer berperan sebagai resistor variabel atau Rheostat. Potensiometer biasanya digunakan untuk mengendalikan peranti elektronik seperti pengendali suara pada penguat.



Potentiometer symbol Europe.svg


    Spesifikasi :

          


          3. NE555
              IC 555 merupakan salah satu komponen elektronika yang cukup terkenal, sederhana  dan serba guna. Nama IC 555 diambil dari 3 buah resistor yang di dalamnya terdapat kemasan IC dengan nilai masing-masing 5kΩ. Ukurannya yang kecil dengan harganya yang relatif murah yaitu sekitar Rp.2000-Rp.5000 membuat komponen ini menjadi pilihan para penggemar elektronika untuk menjadikan sebagai komponen utamanya maupun komponen pendukung. IC ini didesain dan diciptakan oleh Hans R. Camenzind pada tahun 1970 dan diperkenalkan pada tahun 1971 oleh Signetics. Nama aslinya adalah SE555/NE555 dan dijuluki sebagai “The IC Time Machine”. Pada dasarnya aplikasi utama dari IC NE555 ini digunakan untuk  timer (pewaktu) dengan operasi rangkaian monostable dan pulse generator (pembangkit pulsa) dengan operasi rangkaian astable. Selain itu, dapat juga digunakan sebagai Time Delay Generator dan Sequential Timing. IC  NE555 ini memiliki 8 pin yang tiap kakinya memiliki konfigurasi yang berbeda beda.
Cara Kerja:
  • Bagian trigger, berfungsi memberikan triger atau perintah ke IC 555 sebagai tanda   proses timer dimulai
  • Bagian THReshold, biasanya diberi kapasitor dan resistor variable untuk kecepatan waktu  On Off agar dapat diatur sesuai keinginan.
Spesifikasi IC 555:
  • Tegangan masukan / Catu daya : 4.5 ∼ 15 V
  • Besaran arus untuk 5 vdc : 3 ∼ 6 mA
  • Besaran arus untuk 15 vdc : 10 ∼ 15 mA
  • Maksimum output Arus : 200 mA
  • Daya : 600 mW
  • Suhu kerja antara : 0 to 70 °C

Berikut Gambar dari IC NE555

PinNamaKegunaan
1GNDGrouND (0V) , terminal negatif sumber tegangan DC.
2TRTRigger (penyulut), pulsa negatif pendek pada pin ini menyulut pewaktuan
3QOutput (keluaran), Selama pewaktuan, keluaran berada pada +VCC
4RReset, interval pewaktuan dapat disela dengan memberikan pulsa reset 0V
5CVControl Voltage memungkinkan untuk mengakses pembagi tegangan internal (2/3 VCC)
6THRTHReshold menentukan akhir pewaktuan (pewaktuan berakhir Vthr < 2/3 VCC)
7DISDIScharge disambungkan ke kondensator, dan waktu pembuangan muatan kondensator menentukan interval pewaktuan.
8V+positive supply Voltage tegangan catu positif yang harus di antara The 3 dan 15 V

Konfigurasi Pin :

Mengenal IC 555 (IC Timer) dan Konfigurasi kaki IC 555

Berikut ini adalah susunan dan konfigurasi Kaki IC 555 yang berbentuk DIP 8 kaki.

  • Kaki 1 (GND) : Terminal Ground atau Terminal Negatif sumber tegangan DC.
  • Kaki 2 (TRIG) : Terminal Trigger (Pemicu), digunakan untuk memicu Output menjadi “High”, kondisi High akan terjadi apabila level tegangan pada kaki Trigger ini berubah dari High menuju ke <1/3Vcc (Lebih kecil dari 1/3Vcc).
  • Kaki 3 (OUT) : Terminal Output (Keluaran) yang memiliki 2 keadaan yaitu “Tinggi/HIgh” dan “Rendah/Low”.
  • Kaki 4 (RESET) : Terminal Reset. Apabila kaki 4 digroundkan, Output IC akan menjadi rendah dan menyebabkan perangkat ini menjadi OFF. Oleh karena itu, untuk memastikan IC dalam kondisi ON, Kaki 4 biasanya diberikan sinyal “High”.
  • Kaki 5 (CONT) : Terminal Control Voltage (Pengatur Tegangan), memberikan akses terhadap pembagi tegangan internal. Secara default, tegangan yang ditentukan adalah 2/3 Vcc.
  • Kaki 6 (THRES) : Terminal Threshold, digunakan untuk membuat Output menjadi “Low”. Kondisi “Low” pada Output ini akan terjadi apabila Kaki 6 atau Kaki Threshold ini berubah dari Low menuju > 1/3Vcc (lebih besar dari 1/3Vcc).
  • Kaki 7 (DISCH) : Terminal Discharge. Pada saat Output “Low”, Impedansi kaki 7 adalah “Low”. Sedangkan pada saat Output “High”, Impedansi kaki 7 adalah “High”.
    Kaki Discharge ini biasanya dihubungkan dengan Kapasitor yang berfungsi sebagai penentu interval pewaktuan. Kapasitor akan mengisi dan membuang muatan seiring dengan impedansi pada kaki 7. Waktu pembuangan muatan inilah yang menentukan Interval Pewaktuan dari IC555.
  • Kaki 8 (Vcc) : Terminal Positif sumber tegangan DC (sekitar 4,5V atau 16V).

        4. Alternator/Vsine
Gambar 2.3. Alternator

Alternator pada rangkaian sebagai gambaran dari listrik AC dari pusat penyedia listrik. Alternator berfungsi untuk merubah energi mekanik (gerak) menjadi energi listrik. Listrik yang dihasilkan oleh alternator berbentuk listrik AC (bolak-balik). Untuk merubah arus AC menjadi DC, maka pada alternator dilengkapi komponen penyearah arus yaitu diode (rectifier). Diode ini menjadi satu di dalam alternator.


    

            5. OP-AMP (LM741)

 

Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

 



Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :

1.    Masukan non-pembalik (Non-Inverting) +

2.    Masukan pembalik (Inverting) –

3.    Keluaran Vout

4.    Catu daya positif +V

5.    Catu daya negatif -V



Komponen Input :
                           
            1. Lm35 adalah komponen elektronika yang berfungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Lm358 yang diguankan sebagai komparator inverting , yaitu membandingkan antara tegangan input dari sensor dengan tegangan input dari variable resistor.
Karakteristik Sensor LM 35

1. Resolusi Sensor 10 mVolt/ ºC, sehingga dapat dikalibrasi langsung dalam celcius.
2. Keakurasi kalibrasi 0,5 ºC pada suhu 25 ºC .
3. Jangkauan maksimal operasi suhu -55 ºC sampai +150 ºC.
4. Tegangan kerja  4v sampai 30 volt.
5. Konsumsi arus rendah kurang dari 60 µA.
6. Faktor pemanasan diri yang rendah (low-heating) kurang dari 0,1 ºC pada udara diam.
7. Impedansi keluaran yang rendah 0,1 W untuk beban 1 mA.
8. Toleransi ketidaklinieran hanya sekitar ± ¼ ºC


Spesifikasi:

        
Konfigurasi PinOut

Tiga pin LM35 menujukan fungsi masing-masing pin diantaranya, pin 1 berfungsi sebagai sumber tegangan kerja dari LM35, pin 2 atau tengah digunakan sebagai tegangan keluaran atau Vout dengan jangkauan kerja dari 0 Volt sampai dengan 1,5 Volt dengan tegangan operasi sensor LM35 yang dapat digunakan antara 4 Volt sampai 30 Volt.



                            

        2. Thermistor (NTC)
Thermistor NTC adalah resistor dengan koefisien temperature negative yang sangat tinggi.yang artinya, apabila temperature disekitar NTC naik maka resistansinya akan menurun.
Koefisien suhu negatif dari resistansi termistor, atau termistor NTC, mengurangi atau memperkecil nilai resistifnya ketika suhu operasi di sekitar mereka meningkat. Umumnya, termistor NTC adalah jenis sensor suhu yang paling umum digunakan karena dapat digunakan di hampir semua jenis peralatan di mana suhu berperan.

Termistor suhu NTC memiliki hubungan hambatan listrik negatif versus suhu (R/T). Respon negatif yang relatif besar dari termistor NTC berarti bahwa perubahan kecil dalam suhu dapat menyebabkan perubahan signifikan pada hambatan listriknya. Ini membuatnya ideal untuk pengukuran dan kontrol suhu yang akurat.
                                        

FITUR DAN SPESIFIKASI :
- Technology: Ceramic Insulation
- Color: Sliver+Red
- Allowable Deviation: ±5%
- Rated Power: 1W
- Temperature coefficient: PTC


Grafik resistansi fungsi temperaturGrafik resistansi fungsi temperatur

 Komponen Output :
        1. Speaker
Simbol dan bentuk Loudspeaker

Speaker yang digunakan untuk Sound System Entertainment pada umumnya dapat dibedakan menjadi 2 kategori, yaitu Speaker Pasif dan Speaker Aktif. Berikut ini adalah penjelasan singkat mengenai kedua jenis Speaker ini.

  1. Speaker Pasif (Passive Speaker)
    Speaker Pasif adalah Speaker yang tidak memiliki Amplifier (penguat suara) di dalamnya. Jadi Speaker Pasif memerlukan Amplifier tambahan untuk dapat menggerakannya. Level sinyal harus dikuatkan terlebih dahulu agar dapat menggerakan Speaker Pasif. Sebagian besar Speaker yang kita temui adalah Speaker Pasif.
  1. Speaker Aktif (Active Speaker)
    Speaker Aktif adalah Speaker yang memiliki Amplifier (penguat suara) di dalamnya. Speaker Aktif memerlukan kabel listrik tambahan untuk menghidupkan Amplifier yang terdapat didalamnya.

Prinsip Kerja SpeakerStruktur Dasar Loudspeaker

Pada gambar diatas, dapat kita lihat bahwa pada dasarnya Speaker terdiri dari beberapa komponen utama yaitu Cone, Suspension, Magnet Permanen, Voice Coil dan juga Kerangka Speaker.

Dalam rangka menterjemahkan sinyal listrik menjadi suara yang dapat didengar, Speaker memiliki komponen Elektromagnetik yang terdiri dari Kumparan yang disebut dengan Voice Coil untuk membangkitkan medan magnet dan berinteraksi dengan Magnet Permanen sehingga menggerakan Cone Speaker maju dan mundur. Voice Coil adalah bagian yang bergerak sedangkan Magnet Permanen adalah bagian Speaker yang tetap pada posisinya. Sinyal listrik yang melewati Voice Coil akan menyebabkan arah medan magnet berubah secara cepat sehingga terjadi gerakan “tarik” dan “tolak” dengan Magnet Permanen. Dengan demikian, terjadilah getaran yang maju dan mundur pada Cone Speaker.

Cone adalah komponen utama Speaker yang bergerak. Pada prinsipnya, semakin besarnya Cone semakin besar pula permukaan yang dapat menggerakan udara sehingga suara yang dihasilkan Speaker juga akan semakin besar.

Suspension yang terdapat dalam Speaker berfungsi untuk menarik Cone ke posisi semulanya setelah bergerak maju dan mundur. Suspension juga berfungsi sebagai pemegang Cone dan Voice Coil. Kekakuan (rigidity), komposisi dan desain Suspension sangat mempengaruhi kualitas suara Speaker itu sendiri.                

Cara membaca spesifikasi speaker


    2.  LED
                              

             Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. 
             LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).



     1.3 Dasar Teori [KEMBALI]
           a. Baterai
Sebagai sumber arus DC. Baterai adalah perangkat listrik yang dapat mengubah energi kimia menjadi energi listrik. Berbeda dengan power supply, baterai memiliki kelebihan karena dapat menyuplai energi listrik walau saat tidak tersambung dengan sumber listrik lain. Namun dengan catatan bahwa baterai tersebut masih terisi muatan listrik. Baterai biasa digunakan pada perangkat portabel, yaitu perangkat yang dapat di bawa ke mana saja seperti handphone, laptop, senter, radio, dan sebagainya. 
Baterai diproduksi dengan ukuran dan tegangan yang berbeda-beda. Berdasarkan siklus penggunaan, baterai dibagi menjadi 2 yaitu primer dan sekunder. 

Baterai primer merupakan baterai yang hanya memiliki satu siklus penggunaan. Maksudnya, baterai ini tidak dapat digunakan lagi setelah habis. Ketika sudah habis, baterai ini akan berakhir di tempat sampah.

Baterai sekunder merupakan baterai yang memiliki lebih dari satu siklus penggunaan. Ketika muatan listriknya sudah habis, kita dapat menggunakannya kembali dengan cara diisi ulang (recharging). Walaupun begitu, baterai ini memiliki batas waktu penggunaan, karena bahan kimia memiliki titik jenuh di mana tidak dapat diisi ulangi dan menyimpan muatan listrik lagi.
Bagaimana Baterai Bekerja? - GIPeng
Berfungsi sebagai sumber tegangan. Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektrode negatif, elektrode yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektrode positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katode ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anode ketika pengisian. Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.
Bateral sebagai alat untuk menyimpan energi listrik sekaligus sumber tegangan (Catu daya DG) tentu saja juga memiliki nilai hambatan atau resistansi. nilai hambatan tersebut dapat diketahui dengan cara melakukan pengukuran arus dan tegangan pada catu daya tersebut.


Dengan data pengukuran tegangan dan arus maka tabel daya dapat dia dengan menggunakan persamaan berikut:

P = V x I

 

Keterangan :

P = Daya (W)

V = Tegangan yang terukur (V)

I = Arus yang terukur (I)

          
            b. Resistor
Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika.
Resistor merupakan komponen elektronik yang memiliki dua pin dan didesain untuk mengatur tegangan listrik dan arus listrik. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm

V = I R

Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam komponen dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhuderau listrik (noise), dan induktansi

 

resistor

1.    Resistor 4 gelang warna

Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.

2.    Resistor 5 gelang warna

Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.

3.    Resistor 6 gelang warna

Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.

Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai toleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).


 c.  Potensiometer

Potensiometer adalah sebuah jenis resistor yang mengatur sebuah tahanan atau hambatan secara linier atau Komponen resistif tiga kawat yang bertindak sebagai pembagi tegangan yang menghasilkan sinyal output tegangan variabel kontinu yang sebanding dengan posisi fisik wiper di sepanjang trek.

Prinsip Kerja (Cara Kerja) Potensiometer

Sebuah Potensiometer (POT) terdiri dari sebuah elemen resistif yang membentuk jalur (track) dengan terminal di kedua ujungnya. Sedangkan terminal lainnya (biasanya berada di tengah) adalah Penyapu (Wiper) yang dipergunakan untuk menentukan pergerakan pada jalur elemen resistif (Resistive). Pergerakan Penyapu (Wiper) pada Jalur Elemen Resistif inilah yang mengatur naik-turunnya Nilai Resistansi sebuah Potensiometer.

Elemen Resistif pada Potensiometer umumnya terbuat dari bahan campuran Metal (logam) dan Keramik ataupun Bahan Karbon (Carbon).

Berdasarkan Track (jalur) elemen resistif-nya, Potensiometer dapat digolongkan menjadi 2 jenis yaitu Potensiometer Linear (Linear Potentiometer) dan Potensiometer Logaritmik (Logarithmic Potentiometer).

Fungsi-fungsi Potensiometer

Dengan kemampuan yang dapat mengubah resistansi atau hambatan, Potensiometer sering digunakan dalam rangkaian atau peralatan Elektronika dengan fungsi-fungsi sebagai berikut :

  1. Sebagai pengatur Volume pada berbagai peralatan Audio/Video seperti Amplifier, Tape Mobil, DVD Player.
  2. Sebagai Pengatur Tegangan pada Rangkaian Power Supply
  3. Sebagai Pembagi Tegangan
  4. Aplikasi Switch TRIAC
  5. Digunakan sebagai Joystick pada Tranduser
  6. Sebagai Pengendali Level Sinyal
            
        d. Thermistor
            Thermistor atau resistor termal adalah salah satu jenis resistor yang hambatan listriknya bervariasi dengan perubahan suhu. Meskipun semua tahanan resistor berfluktuasi sedikit dengan suhu, termistor sangat sensitif terhadap perubahan suhu.

Thermistor bertindak sebagai komponen pasif dalam suatu rangkaian. Thermistor adalah komponen yang cukup akurat, murah, dan kuat untuk mengukur suhu. Meskipun tidak bekerja dengan baik di suhu yang sangat panas atau dingin, namun Thermistor merupakan sensor pilihan untuk berbagai aplikasi dan ideal ketika pembacaan suhu yang akurat diperlukan. Simbol sirkuit untuk termistor ditunjukkan di bawah ini.
Simbol Thermistor
Simbol Thermistor


Fungsi dan Kegunaan Thermistor

Thermistor memiliki beragam aplikasi pada rangkaian elektronik. Thermistor banyak digunakan sebagai cara untuk mengukur suhu sebagai termistor termometer pada berbagai kondisi cair maupun udara ambien lingkungan. Beberapa fungsi dan keggunaan pada termistor yang paling umum meliputi:
1. Sebagai termometer digital (termostat)
2. Digunakan pada aplikasi otomotif (untuk mengukur temperatur oli dan cairan pendingin di mobil & truk)
3. Peralatan rumah tangga (seperti microwave, lemari es, dan oven)
4. Perlindungan sirkuit misalnya pada perlindungan lonjakan arus.
5. Baterai isi ulang, agar memastikan suhu baterai yang benar dipertahankan.
6. Untuk mengukur konduktivitas termal bahan listrik
Kompensasi suhu. Misalnya mempertahankan resistansi untuk mengkompensasi efek yang disebabkan oleh perubahan suhu di bagian lain dari rangkaian.
7. Digunakan pada sirkuit jembatan wheatstone.



Prinsip Kerja Thermistor


Prinsip kerja termistor dipengaruhi oleh resistansi yang bergantung pada perubahan suhu. Resistansi pada thermistor dapat diukur menggunakan ohmmeter. Jika hubungan yang tepat antara perubahan suhu terhadap pengaruh resistansi termistor, maka dengan mengukur resistansi thermistor sehingga dapat menurunkan suhu.

Seberapa besar perubahan resistansi tergantung pada jenis bahan yang digunakan dalam thermistor. Hubungan antara suhu dan resistansi termistor tidak terjadi secara linier. Grafik termistor ditunjukkan pada gambar di bawah ini:
Prinsip kerja thermistor
Prinsip kerja thermistor

Jika termistor dengan grafik suhu di atas, maka dapat dengan mudah mensejajarkan resistansi yang diukur oleh ohmmeter dengan suhu yang ditunjukkan pada grafik. Dengan menggambar garis horizontal dari resistansi pada sumbu y, dan menggambar garis vertikal turun dari garis horizontal ini bersinggungan dengan grafik, maka dapat menurunkan suhu thermistor.

Jenis-Jenis Thermistor

Secara umum terdapat dua jenis thermistor yaitu :

1. Negative Temperature Coefficient (NTC) Thermistor

Dalam termistor NTC, ketika suhu meningkat, resistensi menurun. Dan ketika suhu menurun, resistensi meningkat. Oleh karena itu dalam suhu dan resistansi termistor NTC berbanding terbalik. Thermistor NTC adalah jenis thermistor yang paling umum dan sering digunakan.

2. Positive Temperature Coefficient (PTC) Thermistor
Termistor PTC memiliki hubungan berbanding lurus antara suhu dan resistansi. Ketika suhu meningkat, maka resistansi akan meningkat. Dan sebaliknya ketika suhu menurun, maka resistensi menurun.

Meskipun termistor PTC tidak secara umum digunakan seperti pada termistor NTC, namun thermistor PTC sering digunakan sebagai bentuk perlindungan sirkuit. Serupa dengan fungsi sekering, termistor PTC dapat bertindak sebagai perangkat pembatas arus. Ketika arus melewati perangkat maka akan menyebabkan sejumlah kecil pemanasan resistif.


Konstruksi dan Karakteristik Thermistor


Terdapat berbagai bentuk dan ukuran termistor yang tersedia di pasaran. Termistor yang lebih kecil berbentuk beads dengan diameter mulai dari 0,15 milimeter hingga 1,5 milimeter. Termistor juga bisa dalam bentuk disk dan washer yang dibuat dengan menekan bahan termistor di bawah tekanan tinggi ke dalam bentuk silinder datar dengan diameter dari 3 milimeter hingga 25 milimeter.
Konstruksi dan Jenis Thermistor
Konstruksi dan Jenis Thermistor

Ukuran umum termistor adalah 0,125mm hingga 1,5 mm. Termistor yang tersedia secara komersial memiliki nilai nominal 1K, 2K, 10K, 20K, 100K, dll. Nilai ini menunjukkan nilai resistansi pada suhu 25C.

Termistor tersedia dalam model yang berbeda: tipe beds, tipe batang, tipe cakram, dll. Keuntungan utama dari termistor adalah ukurannya yang kecil dan biaya yang relatif rendah. Keuntungan ukuran ini berarti bahwa konstanta waktu dari termistor yang dioperasikan dalam selubung adalah kecil, meskipun pengurangan ukuran juga mengurangi kemampuan disipasi panasnya sehingga membuat efek pemanasan sendiri lebih besar. Efek ini secara permanen dapat merusak termistor.

Untuk mencegah hal tersebut, termistor harus dioperasikan pada level arus listrik yang rendah dibandingkan dengan termometer resistan yang menghasilkan sensitivitas pengukuran yang lebih rendah.


        e. NE 555
             IC Timer atau IC Pewaktu adalah jenis IC yang digunakan untuk berbagai Rangkaian Elektronika yang memerlukan fungsi Pewaktu dan multivibrator didalamnya. Beberapa rangkaian yang memerlukan IC Timer diantaranya seperti Waveform Generator, Frequency Meter, Jam Digital, Counter dan lain sebagainya. IC Timer atau IC Pewaktu yang paling populer saat ini adalah IC 555 yang dikembangkan oleh Hans R. Camenzind yang bekerja untuk Signetic Corporation pada tahun 1970-an. Pada dasarnya, IC Timer 555 merupakan IC Monolitik pewaktu yang menghasilkan Osilasi (Oscilation) dan Waktu Penundaan (Delay Time) dengan keakuratan dan kestabilan tinggi.


IC Timer 555 yang umum digunakan adalah IC Timer 555 yang berbentuk DIP (Dual Inline Package) dengan 8 kaki terminalnya. Namun seiring dengan perkembangannya, saat ini kita dapat menemui beberapa versi IC 555, diantaranya seperti IC 556 yang menggabungkan 2 buah IC 555 dalam satu kemasan (14 kaki), IC 558 yang menggabungkan 4 buah IC555 dalam satu kemasan (16 kaki) serta IC555 yang mengkonsumsi daya rendah seperti 7555 dan TLC555. Harga sebuah IC 555 yang berbentuk DIP 8 kaki cukup murah, yaitu sekitar Rp. 2.000 hingga Rp. 5.000 tergantung merek dan tipenya.

Nama IC 555 diambil dari 3 buah resistor yang terdapat dalam kemasan IC dengan nilai masing-masingnya 5kΩ.

Susunan dan Konfigurasi Kaki IC 555

Mengenal IC 555 (IC Timer) dan Konfigurasi kaki IC 555

Berikut ini adalah susunan dan konfigurasi Kaki IC 555 yang berbentuk DIP 8 kaki.

  • Kaki 1 (GND) : Terminal Ground atau Terminal Negatif sumber tegangan DC.
  • Kaki 2 (TRIG) : Terminal Trigger (Pemicu), digunakan untuk memicu Output menjadi “High”, kondisi High akan terjadi apabila level tegangan pada kaki Trigger ini berubah dari High menuju ke <1/3Vcc (Lebih kecil dari 1/3Vcc).
  • Kaki 3 (OUT) : Terminal Output (Keluaran) yang memiliki 2 keadaan yaitu “Tinggi/HIgh” dan “Rendah/Low”.
  • Kaki 4 (RESET) : Terminal Reset. Apabila kaki 4 digroundkan, Output IC akan menjadi rendah dan menyebabkan perangkat ini menjadi OFF. Oleh karena itu, untuk memastikan IC dalam kondisi ON, Kaki 4 biasanya diberikan sinyal “High”.
  • Kaki 5 (CONT) : Terminal Control Voltage (Pengatur Tegangan), memberikan akses terhadap pembagi tegangan internal. Secara default, tegangan yang ditentukan adalah 2/3 Vcc.
  • Kaki 6 (THRES) : Terminal Threshold, digunakan untuk membuat Output menjadi “Low”. Kondisi “Low” pada Output ini akan terjadi apabila Kaki 6 atau Kaki Threshold ini berubah dari Low menuju > 1/3Vcc (lebih besar dari 1/3Vcc).
  • Kaki 7 (DISCH) : Terminal Discharge. Pada saat Output “Low”, Impedansi kaki 7 adalah “Low”. Sedangkan pada saat Output “High”, Impedansi kaki 7 adalah “High”.
    Kaki Discharge ini biasanya dihubungkan dengan Kapasitor yang berfungsi sebagai penentu interval pewaktuan. Kapasitor akan mengisi dan membuang muatan seiring dengan impedansi pada kaki 7. Waktu pembuangan muatan inilah yang menentukan Interval Pewaktuan dari IC555.
  • Kaki 8 (Vcc) : Terminal Positif sumber tegangan DC (sekitar 4,5V atau 16V).
       f. LM35
          Dalam mengantisipasi terjadinya kebakaran, dibuatlah sebuah rangkaian berupa alarm pendeteksi kebakaran agar dapat meminimalisir kerugian baik nyawa maupun finansial. Dengan alarm ini  dengan menggunakan sensor suhu sehingga dapat mendeteksi kebakaran, sehingga kita dapat menyelamatkan nyawa secepat mungkin karena telah adanya pemberitahuan dari alarm sebelum apinya makin besar. Pada rangkaian ini, kami menggunakan sensor lm35 dan thermistor.
Sensor lm35 merupakan komponen elektronika yang berfungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Lm358 yang diguankan sebagai komparator inverting , yaitu membandingkan antara tegangan input dari sensor dengan tegangan input dari variable resistor.

Adapun karakteristik sensor lm35 yaitu :
·         Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
·         Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC .
·         Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
·         Bekerja pada tegangan 4 sampai 30 volt.
·         Memiliki arus rendah yaitu kurang dari 60 µA.
·       Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
·         Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
·         Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

Prinsip kerja LM35 yaitu secara prinsip sensor akan melakukan penginderaan pada saat perubahan suhu setiap suhu 1 ºC akan menunjukan tegangan sebesar 10 mV. Pada penempatannya LM35 dapat ditempelkan dengan perekat atau dapat pula disemen pada permukaan akan tetapi suhunya akan sedikit berkurang sekitar 0,01 ºC karena terserap pada suhu permukaan tersebut. Dengan cara seperti ini diharapkan selisih antara suhu udara dan suhu permukaan dapat dideteksi oleh sensor LM35 sama dengan suhu disekitarnya, jika suhu udara disekitarnya jauh lebih tinggi atau jauh lebih rendah dari suhu permukaan, maka LM35 berada pada suhu permukaan dan suhu udara disekitarnya . suhu lingkungan di deteksi menggunakan bagian IC yang peka terhadap suhu. Suhu lingkungan akan ini diubah menjadi tegangan listrik oleh rangkaian dalam IC, dimana perubahan suhu berbanding lurus dengan perubahan tegangan outputnya,

Kelebihan dan kekurangan sensor suhu lm35 :
• Kelebihan:
a. Rentang suhu yang jauh, antara -55 sampai +150 oC
b. Low self-heating, sebesar 0.08 oC
c. Beroperasi pada tegangan 4 sampai 30 V
d. Rangkaian tidak rumit
e. Tidak memerlukan pengkondisian sinyal
• Kekurangan:
Membutuhkan sumber tegangan untuk beroperasi

Gambar 1. Sensor Suhu LM35

LM35 adalah komponen sensor suhu berukuran kecil seperti transistor (TO-92). Komponen yang sangat mudah digunakan ini mampu mengukur suhu hingga 100 derajad Celcius, tetapi tidak cocok untuk pengukur suhu yang sensornya dimasukan dalam cairan. Dengan tegangan keluaran yang terskala linear dengan suhu terukur, yakni 10 milivolt per 1 derajad Celcius, maka komponen ini sangat cocok untuk digunakan sebagai eksperimen kita, atau bahkan untuk aplikasi-aplikasi seperti termometer ruang digital, mesin pasteurisasi, atau termometer badan digital.
Gambar 1 IC LM35


            g. Thermistor
               Thermistor adalah salah satu jenis resistor yang nilai resistansinya atau nilai hambatannya dipengaruhi oleh suhu (temperature). Thermistor memiliki 2 jenis, yaitu thermistor NTC (negative temperature coefficient) dan PTC (positive temperature coefficient).
                   Pengertian termistor NTC (Negative TemperaturCoefisien) adalah resistor dengan koefisien temperatur negatif yang sangat tinggi. Termistor jenis ini dibuat dari oksida dari kelompok elemen transisi besi ( misalnya FE2O3, NiO CoO dan bahan NTC yang lain).
             Thermistor NTC memiliki nilai koefisien negatif dimana apabila temperatur turun maka nilai tahanan thermistor NTC akan meningkat dan sebaliknya, nilai tahanannya akan turun apabila temperatur naik.

Dengan kata lain, thermistor tipe NTC ini akan berbanding terbalik atau negatif antara kenaikan tahanan dengan kenaikan temperaturnya.

Kenaikan dan penurunan tahanan akan mempengaruhi nilai arus yang dapat melewati komponen thermistor tersebut. Apabila tahanannya tinggi maka arus yang mengalir akan semakin kecil atau bahkan arus tidak dapat mengalir sama sekali dan sebaliknya apabila nilai tahanan kecil maka arus yang mengalir dapat lebih besar.

NTC (Negative Coefisien Temperature)

NTC (Negative Coefisien Temperature)

Oksida – oksida ini mempunyai resistivitas yang sangat tinggi dalam zat murni, tetapi bisa ditransformasikan kedalam semi konduktor dengan jalan menambahkan sedikit ion – ion lain yang valensinya berbeda. Harga nominal biasanya ditetapkan pada temperatur 25 oC. Perubahan resistansi yang diakibatkan oleh non linieritasnya ditunjukkan dalam bentuk diagram resistansi dengan temperatur, seperti yang ditunjukkan pada gambar berikut ini.
NTC

  1. Bentuk fisik NTC
  2. Simbol NTC
  3. Grafik nilai tahanan NTC akibat suhu
Tahanan pada thermistor yaitu 0,5W – 75W, memiliki resolusi awal 0.3 C , memiliki rentang range nilai resistansi yang luas berkisar dari 2000 ohm - 10000 ohm.
pada thermistor NTC, nilai resistansinya akan turun jika suhu sekitar thermistor tersebut tinggi, sedangkan pada thermistor PTC, semakin tinggi suhu semakin tinggi pula nilai resistansinya.


Termistor Sensor Suhu NTC dan PTC
Gambar 3.2 grafik perbandingan suhu terhadap nilai resistansi
Pada rangkaian :


             a.  NTC dan R1 =  pembagi tegangan


             b.   IC LM35 = komparator inverting
             c.IC NE555 = monostabil multivibrator
             d. LED dan speaker = indikator

Karakteristik NTC (Negative Coefisien Temperature)

Bilamana memungkinkan untuk menemukan termistor NTC untuk memenuhi seluruh harga NTC yang dibutuhkan, kadang – kadang jauh lebih ekonomis bila beberapa NTC digabung atau diadaptasikan harga-harga resistansi yang sudah ada dalam rangkaian dengan salah satu atau lebih termistor NTC yang kita punyai.
Kadang-kadang, dengan menambah resistor seri dan paralel dengan NTC, dan kita bisa memperoleh harga termistor NTC standart yang kita perlukan. Seandainya tidak bisa maka kita perlu mencari type termistor NTC khusus yang kita butuhkan.

Jadi seandainya dari seluruh kombinasi resistor yang telah kita lakukan kita tidak mendapat harga NTC standart yang kita butuhkan, maka dalam hal ini kita perlu mencari NTC sesuai dengan spesifikasi yang kita butuhkan. Dalam suatu rangkaian dimana terdapat suatu NTC, maka rangkaian resistor tambahan seringkali banyak manfaatnya.
h.  Alternator/ Vsine

Alternator merupakan salah satu komponen-komponen sistem pengisian kendaraan. Alternator memiliki peran yang sangat penting pada sistem pengisian yaitu untuk menghasilkan tegangan dan arus listrik yang nantinya digunakan untuk mengisi (mencharger) baterai (aki/ accu).

Alternator berfungsi untuk merubah energi mekanik (gerak) menjadi energi listrik. Listrik yang dihasilkan oleh alternator berbentuk listrik AC (bolak-balik). Untuk merubah arus AC menjadi DC, maka pada alternator dilengkapi komponen penyearah arus yaitu diode (rectifier). Diode ini menjadi satu di dalam alternator.



Pada alternator terdapat empat buah terminal yaitu terminal B, E, F dan terminal N.

·         Terminal B merupakan terminal output tegangan alternator yang nantinya dihubungkan ke baterai untuk pengisian arus dan juga dihubungkan ke terminal B regulator untuk mengatur arus pengisian.

·         Terminal F alternator berhubungan dengan sikat positif dan rotor coil, serta terhubung dengan terminal F regulator.

·         Terminal N alternator terhubung dengan netral stator coil, serta terhubung dengan terminal N regulator.

·         Sedangkan terminal E alternator terhubung dengan sikat negatif dan rotor coil, serta terhubung dengan terminal E regulator. Terminal E juga dihubungkan dengan bodi atau rangka alternator yang nantinya bodi alternator dihubungkan dengan terminal negatif baterai (aki/ accu)


i. Op-amp

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.



Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)


                                            Grafik input dan output op-amp


1.4 Prosedur Percobaan [KEMBALI]
·         Buka aplikasi proteus

·         Pilih komponen yang dibutuhkan, pada rangkaian ini dibutukan komponen sensor LM35,   sensor Thermistor, resistor, baterai, led, op amp, Ic NE 555, potensiometer, dan  speaker.

·         Rangkai setiap komponen menjadi rangkaian yang diinginkan

·         Ubah spesifikasi komponen sesuai kebutuhan

·         Tambahkan DC voltmeter untuk mengetahui besar tegangan yang dinginkan.

·         Jalankan simulasi rangkaian.




2. Rangkaian [KEMBALI]

    2.1 Gambar Rangkaian beserta Prinsip Kerja [KEMBALI]




     Prinsip kerja rangkaian diatas cukup sederhana, Saat komponen NTC tidak panas (dalam kasus ini terkena api) maka suhu disekitar NTC menjadi lebih besar  (lebih besar dari pada R1) sehingga tidak ada tegangan dan arus yang mengalir di pada masukkan pin 2 ic LM358. Pin2 akan mendapatkan tegangan kecil akan memperbesar tegangan keluaran pada pin 1 sehingga LED D1 menyala. Pin 2 masukkan IC NE555 mendapatkan tegangan yang mengakibatkan tidak ada tegangan yang keluar pada pin 3 IC NE555 sehingga LED D2 dan speaker tidak aktif.
Saat komponen NTC dipanaskan denagn api, maka suhu disekitar NTC akan menjadi kecil (lebih kecil dari pada R1) sehingga terdapat tegangan dan arus mengalir pada masukkan pin 2 IC LM358. Pin 2 yang mendapatkan tegangan akan memperkecil tegangan keluaran pada pin 1 sehingga LED D1 mati. Pin 2 masukkan IC NE555 mendapatkan tegangan yang keluar pada pin 3 IC NE555 sehingga LED D2  dan speaker hidup.



           

    2.2 Vidio Rangkaian [KEMBALI]

           






3. Link Download [KEMBALI]

    Vidio                                                               : klik disini
    Html                                                               : klik disini
    Materi                                                             : klik disini
    Datasheet Sensor Thermistor NTC                : klik disini
    Datasheet Sensor LM35                                 : klik disini
    Rangkaian aplikasi                                         : klik disini
    Library LM35 for proteus                              : klik disini
    Library Thermistor                                         : klik disini
    Datasheet NTC                                               : klik disini
    Datasheet Op Amp                                         : klik disini
    Datasheet Resistor                                          : klik disini
    Datasheet Baterai                                            :klik disini
    Datasheet LED                                               : klik disini
    Datasheet Potensiometer                                : klik disini
    Datasheet Alternator                                      : klik disini
                   

    


[menuju awal]

Tidak ada komentar:

Posting Komentar