[menuju akhir]

LAPORAN AKHIR 2 PERCOBAAN 3

a)  Memahami prinsip kerja ADC pada arduino

b) mendesain rangkaian menggunakan arduino yang terhubung kr potensiometer



2. Komponen [Kembali]

a. Alat


1) Power Supply 
Gambar 1. Power Supply



2) Battery

Gambar 2. Battery



b. Bahan


1) Motor DC

Gambar 4. Motor DC

2) Potensiometer
            


c. Komponen Lainnya

1) Mikrokontroler
Gamabar 5. Arduino Uno

2) Driver Motor

Gambar 6. Driver Motor L293D



3. Dasar Teori [Kembali]

    a. Arduino UNO 
Pin pin pada arduino UNO


konfigurasi pin Arduino UNO


            Arduino Uno adalah board mikrokontroler berbasis ATmega328 (datasheet). Memiliki 14 pin input dari output digital dimana 6 pin input tersebut dapat digunakan sebagai output PWM dan 6 pin input analog, 16 MHz osilator kristal, koneksi USB, jack power, ICSP header, dan tombol reset. Untuk mendukung mikrokontroler agar dapat digunakan, cukup hanya menghubungkan Board Arduino Uno ke komputer dengan menggunakan kabel USB atau listrik dengan AC yang-ke adaptor-DC atau baterai untuk menjalankannya. Setiap 14 pin digital pada arduino uno dapat digunakan sebagai input dan output, menggunakan fungsi pinMode(), digitalwrite(), dan digitalRead(). Fungsi fungsi tersebut beroperasi di tegangan 5 volt, Setiap pin dapat memberikan atau menerima suatu arus maksimum 40 mA dan mempunyai sebuah resistor pull-up (terputus secara default) 20-50 kOhm.

Bagian-bagian arduino uno:

-Power USB

Digunakan untuk menghubungkan Papan Arduino dengan komputer lewat koneksi USB.

-Power jack

Supply atau sumber listrik untuk Arduino dengan tipe Jack. Input DC 5 - 12 V.

-Crystal Oscillator

Kristal ini digunakan sebagai layaknya detak jantung pada Arduino.  Jumlah cetak                                menunjukkan 16000 atau 16000 kHz, atau 16 MHz.

-Reset

Digunakan untuk mengulang program Arduino dari awal atau Reset.

-Digital Pins I / O

Papan Arduino UNO memiliki 14 Digital Pin. Berfungsi untuk memberikan nilai logika (         0 atau 1 ). Pin berlabel " ~ " adalah pin-pin PWM ( Pulse Width Modulation ) yang dapat digunakan untuk menghasilkan PWM.

-Analog Pins

Papan Arduino UNO memiliki 6 pin analog A0 sampai A5. Digunakan untuk membaca sinyal atau sensor analog seperti sensor jarak, suhu dsb, dan mengubahnya menjadi nilai digital.

-LED Power Indicator

Lampu ini akan menyala dan menandakan Papan Arduino mendapatkan supply listrik dengan baik.

Bagian - bagian pendukung:

-RAM

RAM (Random Access Memory) adalah tempat penyimpanan sementara pada komputer yang isinya dapat diakses dalam waktu yang tetap, tidak memperdulikan letak data tersebut dalam memori atau acak. Secara umum ada 2 jenis RAM yaitu SRAM (Static Random Acces Memory) dan DRAM (Dynamic Random Acces Memory).

-ROM

ROM (Read-only Memory) adalah perangkat keras pada computer yang dapat menyimpan data secara permanen tanpa harus memperhatikan adanya sumber listrik. ROM terdiri dari Mask ROM, PROM, EPROM, EEPROM.

Block Diagram Mikrokontroler ATMega 328P pada Arduino UNO

Adapun block diagram mikrokontroler ATMega 328P dapat dilihat pada gambar berikut:



Block diagram dapat digunakan untuk memudahkan / memahami bagaimana kinerja dari mikrokontroler ATMega 328P.

Pin-pin ATMega 328P:

            Rangkaian Mikrokontroler ATMega 328P pada Arduino UNO

 



    b. IC L293D
konfigurasi pin pada IC L293D


        Sirkuit terpadu IC L293D berisi dua buah sirkuit H-Bridge. Dalam modus umum, dua motor DC dapat digerakkan secara bersamaan, dengan arah gerak motor yang dapat ditentukan. Operasi motor dua motor dapat dikendalikan oleh input logic pada pin 2 & 7 dan 10 & 15. Input logic 00 atau 11 akan menghentikan motor. Input logic 01 dan 10 akan memutar di searah jarum jam atau berlawanan arah jarum jam.

Berikan nilai HIGH pada pin 1 dan 9 (sesuai dengan dua motor) agar motor mulai beroperasi. Ketika pin tersebut diberi nilai HIGH, driver terkait akan diaktifkan. Sebaliknya ketika diberi nilai LOW maka motor akan berhenti.

Fungsi Pin Driver Motor DC IC L293D

·   1. Pin EN (Enable, EN1.2, EN3.4) berfungsi untuk mengijinkan driver menerima perintah untuk menggerakan motor DC.

2. Pin In (Input, 1A, 2A, 3A, 4A) adalah pin input sinyal kendali motor DC 
3. Pin Out (Output, 1Y, 2Y, 3Y, 4Y) adalah jalur output masing-masing driver yang dihubungkan ke motor DC 
4. Pin VCC (VCC1, VCC2) adalah jalur input tegangan sumber driver motor DC, dimana VCC1 adalah jalur input sumber tegangan rangkaian kontrol dirver dan VCC2 adalah jalur input sumber tegangan untuk motor DC yang dikendalikan. 

5. Pin GND (Ground) adalah jalu yang harus dihubungkan ke ground, pin GND ini ada 4 buah yang berdekatan dan dapat dihubungkan ke sebuah pendingin kecil.

Feature Driver Motor DC IC L293D Driver motor DC IC L293D memiliki feature yang lengkap untuk sebuah driver motor DC sehingga dapat diaplikasikan dalam beberapa teknik driver motor DC dan dapat digunakan untuk mengendalikan beberapa jenis motor DC. Feature yang dimiliki driver motor DC IC L293D sesuai dengan datasheet adalah sebagai berikut :

·         - Wide Supply-Voltage Range: 4.5 V to 36 V

·         - Separate Input-Logic Supply

·         - Internal ESD Protection

·         - Thermal Shutdown

·         -  High-Noise-Immunity Inputs

          - Functionally Similar to SGS L293 and SGS L293D

·         Output Current 1 A Per Channel (600 mA for L293D)

·         - Peak Output Current 2 A Per Channel (1.2 A for L293D)

·         - Output Clamp Diodes for Inductive Transient Suppression (L293D)

Rangkaian Aplikasi Driver Motor DC IC L293D


Pada gambar driver IC L293D diatas adalah contoh aplikasi dari keempat unit driver motor DC yang dihubungkan secar berbeda sesuai dengan keinginan dan kebutuhan.


    c. Motor DC 

  
          

        Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan RotorStator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

        
Motor DC mempunyai dua komponen utama, yakni rotor dan stator. Untuk dapat bergerak, prinsip kerja motor DC memakai fenomena elektromagnet.Ketika aliran listrik sampai pada bagian kumparan, maka pada permukaan sebelah utara akan secara otomatis bergerak ke arah magnet sisi selatan. Kemudian, kumparan pada magnet sisi selatan bergerak ke arah sisi utara magnet.

Dalam hal ini, terjadi pertemuan antara kedua sisi magnet, maka menyebabkan adanya reaksi saling menarik, sehingga berdampak pada berhentinya pergerakan pada kumparan. 

    Supaya dapat kembali bergerak, maka kutub magnet dan kumparan harus saling berhadapan, sehingga arah aliran listrik pada kumparan menjadi terbalik. Pada keadaan tersebut, maka kutub utara pada kumparan akan beralih menjadi selatan, begitupun sebaliknya. Apabila hal ini terjadi, maka kutub selatan menjadi berhadapan dengan sesama kutub selatan. Demikian halnya dengan kutub utara. Hal tersebut akan  menimbulkan reaksi saling menolak. Sehingga secara otomatis akan menimbulkan pergerakan kumparan.


 Rumus Kecepatan Putar Motor DC

    d.  Potensiometer
Potensiometer adalah sebuah jenis resistor yang mengatur sebuah tahanan atau hambatan secara linier atau Komponen resistif tiga kawat yang bertindak sebagai pembagi tegangan yang menghasilkan sinyal output tegangan variabel kontinu yang sebanding dengan posisi fisik wiper di sepanjang trek.

Prinsip Kerja (Cara Kerja) Potensiometer

Sebuah Potensiometer (POT) terdiri dari sebuah elemen resistif yang membentuk jalur (track) dengan terminal di kedua ujungnya. Sedangkan terminal lainnya (biasanya berada di tengah) adalah Penyapu (Wiper) yang dipergunakan untuk menentukan pergerakan pada jalur elemen resistif (Resistive). Pergerakan Penyapu (Wiper) pada Jalur Elemen Resistif inilah yang mengatur naik-turunnya Nilai Resistansi sebuah Potensiometer.

Elemen Resistif pada Potensiometer umumnya terbuat dari bahan campuran Metal (logam) dan Keramik ataupun Bahan Karbon (Carbon).

Berdasarkan Track (jalur) elemen resistif-nya, Potensiometer dapat digolongkan menjadi 2 jenis yaitu Potensiometer Linear (Linear Potentiometer) dan Potensiometer Logaritmik (Logarithmic Potentiometer).

Fungsi-fungsi Potensiometer

Dengan kemampuan yang dapat mengubah resistansi atau hambatan, Potensiometer sering digunakan dalam rangkaian atau peralatan Elektronika dengan fungsi-fungsi sebagai berikut :

  1. Sebagai pengatur Volume pada berbagai peralatan Audio/Video seperti Amplifier, Tape Mobil, DVD Player.
  2. Sebagai Pengatur Tegangan pada Rangkaian Power Supply
  3. Sebagai Pembagi Tegangan
  4. Aplikasi Switch TRIAC
  5. Digunakan sebagai Joystick pada Tranduser
  6. Sebagai Pengendali Level Sinyal


e) Pulse Width Modulation
PWM (Pulse Width Modulation) adalah salah satu teknik modulasi dengan mengubah lebar pulsa (duty cylce) dengan nilai amplitudo dan frekuensi yang tetap. Satu siklus pulsa merupakan kondisi high kemudian berada di zona transisi ke kondisi low. Lebar pulsa PWM berbanding lurus dengan amplitudo sinyal asli yang belum termodulasi.

Pada board Arduino Uno, pin yang bisa dimanfaatkan untuk PWM adalah pin yang diberi tanda tilde (~), yaitu pin 3, 5, 6, 9, 10, dan pin 11. Pin-pin tersebut merupakan pin yang bisa difungsikan untuk input analog atau output analog. Oleh sebab itu, jika akan menggunakan PWM pada pin ini, bisa dilakukan dengan perintah analogWrite();


PWM pada arduino bekerja pada frekuensi 500Hz, artinya 500 siklus/ketukan dalam satu detik. Untuk setiap siklus, kita bisa memberi nilai dari 0 hingga 255.  Ketika kita memberikan angka 0, berarti pada pin tersebut tidak akan pernah bernilai 5 volt (pin selalu bernilai 0 volt). Sedangkan jika kita memberikan nilai 255, maka sepanjang siklus akan bernilai 5 volt (tidak pernah 0 volt). Jika kita memberikan nilai 127 (kita anggap setengah dari 0 hingga 255, atau 50% dari 255), maka setengah siklus akan bernilai 5 volt, dan setengah siklus lagi akan bernilai 0 volt. Sedangkan jika jika memberikan 25% dari 255 (1/4 * 255 atau 64), maka 1/4 siklus akan bernilai 5 volt, dan 3/4 sisanya akan bernilai 0 volt, dan ini akan terjadi 500 kali dalam 1 detik. 

  Siklus Sinyal PWM pada Arduino

  f) Analog to Digital Converter

 ADC atau Analog to Digital Converter merupakan salah satu perangkat elektronika yang digunakan sebagai penghubung dalam pemrosesan sinyal analog oleh sistem digital. Fungsi utama dari fitur ini adalah mengubah sinyal masukan yang masih dalam bentuk sinyal analog menjadi sinyal digital dengan bentuk kode-kode digital. Ada 2 faktor yang perlu diperhatikan pada proses kerja ADC yaitu kecepatan sampling dan resolusi.

Kecepatan sampling menyatakan seberapa sering perangkat mampu mengkonversi sinyal analog ke dalam bentuk sinyal digital dalam selang waktu yang tertentu. Biasa dinyatakan dalam sample per second (SPS). Sementara Resolusi menyatakan tingkat ketelitian yang dimilliki. Pada Arduino, resolusi yang dimiliki adalah 10 bit atau rentang nilai digital antara 0 - 1023. Dan pada Arduino tegangan referensi yang digunakan adalah 5 volt, hal ini berarti ADC pada Arduino mampu menangani sinyal analog dengan tegangan 0 - 5 volt.

Pada Arduino, menggunakan pin analog input yang diawali dengan kode A( A0- A5 pada Arduino Uno). Fungsi untuk mengambil data sinyal input analog menggunakan analogRead(pin)



4.  Percobaan [Kembali]

     a.  Prosedur Percobaan [Kembali]

1. Pastikan semua supply dalam keadaan off
2. Hubungkan jumper seperti rangkaian dibawah
3. Buatlah listing program yang telah ada pada modul
4. Kemudian upload listing program pada proteus
5. Setelah itu jalankan program
6. Kemudian amati pergerakan motor ketika mengatur potensiometer

 

 
    b. Hardware [Kembali]

        1. Arduino UNO


   2. Potensiometer
Potensiometer

    3. Motor DC






    c.  Rangkaian Simulasi [Kembali]









    d. Listing Program [Kembali] 

int motor;
int output ;
void setup()                    //semua kode dalam fungsi ini dieksekusi
{
  motor = 9;
  pinMode (A0, INPUT);          //Deklarasi pin A0 sebagai input
  pinMode (motor, OUTPUT);      //Motor sebagai output
}
void loop(){  //fungsi ini dijalankan berulang
int val = analogRead(A0);   //Deklarasi A0 sebagai input lalu dimasukkan ke variabel var
byte pwm = map(val, 0, 1023, 0, 255);  // Mengubah range 0-1024 menjadi 0-255 lalu dimasukkan ke variabel pwm
analogWrite(9,pwm);  //Deklarasi output pwm pada pin 9 
delay(100); //mendelay perulangan program selama 100 ms
}


    e. Flowchart [Kembali]





    f. Video [Kembali]





       Pada percobaan ini menggunakan beberapa komponen, dimana terdapat Arduino UNO, potensiometer, Battery, dan motor DC. Rangkaian menggunakan potensiometer sebagai pengatur kecepatan motor, output potensiometer berupa sinyal analog dihubungkan ke pin ADC A0 pada arduino. Dimana besar nilai potensio tersebut sebesar 10Kohm. dan pada kaki anoda dan katodanya dihubungkan ke sumber tegangan dan ground. Pada input digital pada arduino pin 9 dihubungkan ke motor. Yang nantinya pergerakan motor tersebut akan bergerak sesuai nilai potensio yang diberikan.  Lalu pin pwm (~) pada arduino dihubungkan ke motor dc. Motor akan berputar dengan cepat apabila potensiometer di geser ke arah VCC dan berputar lambat apabila di geser ke arah ground karen resistansinya lebih besar. 


       

   
 g. Kondisi dan Analisa [Kembali]
    
    Kondisi :
    Modul 2 Percobaan 3
    Ukur pergerakan motor menggunakan potensiometer, apabila nilai potensiometer sebesar 5Kohm (50%) 

 1.      1.      Apa pengaruh potensiometer terhadap kecepatan putaran motor?

Jawab:

Semakin tinggi nilai hambatan pada potensiometer maka kecepatan motor akan semakin cepat begitupun sebaliknya. Pada Potensiometer memiliki tahanan 10Kohm, pada rangkaian ketika potensiometer bernilai 5Kohm (50%) maka, motor akan bergerak Sedang. Jadi, motor akan bergerak cepat apabila potensiometer mencapai nilai 100%, begitupun sebaliknya. Jika tahanan semakin kecil maka arus yang terlepas ke motor akan semakin banyak dan pergerakan motor semakin cepat.

  

2.      2. Jelaskan listing program bagian kondisi masing masing (tidak usah deklarasi variabel dan input output)

Jawab:

 

int motor;

int output ;

void setup()                   

{

  motor = 9;

  pinMode (A0, INPUT);         

  pinMode (motor, OUTPUT);    

}

void loop(){ 

int val = analogRead(A0);

byte pwm = map(val, 0, 1023, 0, 255); 

analogWrite(9,pwm); 

delay(100);

}

 

(Pada listing program diatas, motor dihubungkan ke pin 9 pada arduino yang nantinya sebagai output dan pada pin 9 di deklarasi output pwm. Yang nantinya, Mengubah range 0-1024 menjadi 0-255 lalu dimasukkan ke variabel pwm. Dan pada program ini di beri delay selam 0,1 s. Pada program ini akan diulang secara trus menerus sesuai pada analogi void loop)  

 

    
h. Link Download [Kembali]
    File Hardware                   di sini
    Vidio Simulasi                  di sini
    Flowchart                          di sini
    Listing Program                di sini
    HTML                               di sini
    Library Arduino Uno        di sini  
    Datasheet Arduino Uno     di sini
    Datasheet Potensiometer   di sini
    Datasheet Motor DC         di sini
    Datasheet Ground             di sini










Tidak ada komentar:

Posting Komentar